

## Key conclusions

- Co-production of electricity and H<sub>2</sub> from coal and natural gas is feasible and deemed techno/economically viable
- Pre-combustion CO, capture will benefit from efficiency improvements in the qasification process and the power cycle (pioneering work)
- Pre-normative work suggests new requirements for CO<sub>2</sub> and H<sub>2</sub> (proper balance is key for the cost of CCS and H, production)
- Pressure build-up from CO<sub>2</sub> injected into deep aquifers can be obviated by new injection strategies

#### **DYNAMIS** addresses two main dimensions:

- near-zero emission power generation
- 2) large-scale dimension for H2 deployment for early adopters (the European transport sector)

#### This comprises, as an interim step aimed at realisation by 2012-2015:

- technology options •
- gas handling, conditioning and transport of gas (H2 and CO2) •
- pre-selection of European production and storage sites using geological information •
- societal issues

# Technical data of a DYNAMIS plant

#### Capture:

- Plant: 400 MWe class facilitating co-production of 50 MW  $H_{2}$  (HHV)
- Basis technology: Integrated coal gasification combined cycle with pre-combustion decarboni-• sation (IGCC-CCS) using a topping cycle fed with H<sub>2</sub>-rich fuel
- Optional technology: Natural gas combined cycle with post-combustion CO<sub>2</sub> capture • (NGCC-CCS) with a parallel steam-methane reformer (SMR) for H<sub>2</sub> production
- CO<sub>2</sub> capture rate: 90%

## Handling of gas yields:

- Hydrogen purity: To comply with the specification of a (future) European H<sub>2</sub> infrastructure (notably the transport sector)
- Captured CO<sub>2</sub>: To be compressed and transformed into dense phase (supercritical pressure or cryogenic)
- CO, composition and impurity levels: Recommendations justified by technical verification and HSE concerns

### Storage:

- CO, injection rate: Around 3 Mtpa (mainly into aquifers or for EOR/EGR)
- Storage capacity: 100 Mt CO<sub>2</sub> (minimum)
- Modelling pre-qualifies sufficiency of storage sites in the vicinity of four (tentative) plant • locations (two in the UK, one in Norway and one in Germany).

#### Financing and bankability:

Modelling suggests that provided equitable revenues are secured the cost of  $CO_2$  capture and storage may become lower than the typical pre-DYNAMIS level of €50-60 per tonne CO,

#### **Dynamis Consortium**

**Co-ordinator: SINTEF Energy Research** 

#### **Partners:**

ALSTOM (Schweiz) AG **ALSTOM Power Centrales** ALSTOM Power Environment ECS France **BP** International Ltd Bundesanstalt für Geowissenschaften und Rohstoffe E.ON UK plc Ecofys b.v. ENDESA Generación S.A. ENEL Produzione S.p.a. Etudes et Productions Schlumberger European Commission - DG JRC – Institute for Energy Fraunhofer Institute for Systems and Innovation Research Geological Survey of Denmark and Greenland IEA Greenhouse Gas R&D Programme Institut Français du Pétrole L'AIR LIQUIDE

#### www.dynamis-hypogen.com

Natural Environment Research Council (British Geological Survey) Netherlands Organisation for Applied Scientific Research (TNO) Norsk Hydro ASA Norwegian University of Science and Technology Progressive Energy Ltd SHELL Hydrogen B.V. Siemens Aktiengesellschaft SINTEF **SINTEF Energy Research** SINTEF Petroleum Research Société Générale London Branch Statoil Store Norske Spitsbergen Kulkompani AS Technical University of Sofia Vattenfall AB Vattenfall Research and Development AB

## Technology for a better society

